Multivariate Interpolation of Wind Field Based on Gaussian Process Regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Process Regression for Multivariate Spectroscopic Calibration

Traditionally multivariate calibration models have been developed using regression based techniques including principal component regression and partial least squares and their non-linear counterparts. This paper proposes the application of Gaussian process regression as an alternative method for the development of a calibration model. By formulating the regression problem in a probabilistic fr...

متن کامل

Energy-Driven Image Interpolation Using Gaussian Process Regression

Image interpolation, as a method of obtaining a high-resolution image from the corresponding low-resolution image, is a classical problem in image processing. In this paper, we propose a novel energy-driven interpolation algorithm employing Gaussian process regression. In our algorithm, each interpolated pixel is predicted by a combination of two information sources: first is a statistical mode...

متن کامل

RBF interpolation and Gaussian process regression through an RKHS formulation

Radial Basis Function (RBF) interpolation is a common approach to scattered data interpolation. Gaussian Process regression is also a common approach to estimating statistical data. Both techniques play a central role, for example, in statistical or machine learning, and recently they have been increasingly applied in other fields such as computer graphics. In this survey we describe the formul...

متن کامل

Hierarchical Gaussian Process Regression

We address an approximation method for Gaussian process (GP) regression, where we approximate covariance by a block matrix such that diagonal blocks are calculated exactly while off-diagonal blocks are approximated. Partitioning input data points, we present a two-layer hierarchical model for GP regression, where prototypes of clusters in the upper layer are involved for coarse modeling by a GP...

متن کامل

Latent Gaussian Process Regression

We introduce Latent Gaussian Process Regression which is a latent variable extension allowing modelling of non-stationary processes using stationary GP priors. The approach is built on extending the input space of a regression problem with a latent variable that is used to modulate the covariance function over the input space. We show how our approach can be used to model non-stationary process...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Atmosphere

سال: 2018

ISSN: 2073-4433

DOI: 10.3390/atmos9050194